

The Role of Radiation Therapy in Pancreatic Cancer

October 25, 2019

If you experience technical difficulty during the presentation:

Contact WebEx Technical Support directly at: US Toll Free: 1-866-779-3239 Toll Only: 1-408-435 -7088 or submit a question to the Event Producer via the Q&A Panel

Thank you to our webinar sponsor:

Thank you to our current Scientific & Medical Affairs Industry Members

The Role of Radiation in Pancreatic Cancer

Pancreatic Cancer Action Network Webinar October 29, 2019

Joseph M. Herman, MD, MSc, MSHCM, FACR Professor, Division of Radiation Oncology MD Anderson Cancer Center

DISCLOSURES

- Research Support: Oncosil, Galera, and Augmenix, RaySearch.
- Consultant: BTG, Celgene, Sirtex, Medtronic, boston scientific

MD Anderson

MD Anderson

Outline: Role of Radiation Therapy in PCA

- 1. Anatomy
- 2. Staging
- 3. RT advances
- 4. Resectable (Adjuvant and Neoadjuvant)
- 5. Borderline Resectable
- 6. Unresectable/ Locally Advanced
- 7. Recurrent
- 8. Metastatic

Netter textbook

** Veins can be reconstructed

Slide(s) courtesy of Dr. Mahmoud Al-Hawary

What stage am I?

- 1. Resectable
- 2. Borderline Resectable
- 3. Unresectable or Locally Advanced
- 4. Metastatic (tumor spread beyond the pancreas and to another location)

Prospective Identification of Anatomically <u>Resectable</u> Pancreatic Cancer by CT Scan

- 1. Absence of disease outside of the pancreas
- 2. Tissue plane between tumor and SMA/CA
- 3. Open SMV-PV confluence

MD Anderson Borderline Resectable and Locally Advanced Pancreatic Cancer

- Tumor *abuts* a major blood vessel(s)
- Deemed resectable
- Neoadjuvant therapy recommended
- Tumor encases a major blood vessel(s)
- Deemed unresectable or LAPC
- New role for "definitive therapy"

Resection Determined by vesser involvement								
	Resectable	Borderline	Locally advanced					
	Resectable Borderline Locally Advanced							
Superior mesenteric or Portal vein	No contact	Abut, encase or occlude	Not reconstructable					
Superior mesenteric artery	No contact	Abut	Encased					
Common Hepatic artery	No contact	Abut or short-segment encase	Long-segment encase					
Celiac Trunk	No contact	<180	>180					

- MD Anderson | Resection Determined by Vessel Involvement

Pancreatic Cancer

2019 estimated 56,770 pancreas cancer dx in US

45,750 deaths from pancreas cancer

Surgery is the only potentially curative option

- 5-year survival: 10-25%
 - <u>Resected</u>: ~2 years median overall survival (OS)
 - <u>Borderline resectable</u>: ~1-2 years median OS
 - Improved with surgery, margins improved with radiation therapy (\mbox{RT})
 - <u>Unresectable/Locally advanced (palliative)</u>: ~1 year median OS (now better)

Siegel Ca Cancer J Clin 2019

Multidisciplinary Teams

Traditional vs. Multidisciplinary Evaluations

Role of radiation therapy in pancreas cancer

<u>Adjuvant:</u> After surgery, RT given in node and/or margin positive resections. Role of intraoperative radiation therapy.

<u>Neoadjuvant:</u> Given in potentially resectable pancreas cancer. Usually between chemotherapy and surgery.

<u>Definitive</u>: Not surgical. Goal is to prolong life and balance quality of life.

<u>Oligometastatic:</u> Given to 1-5 metastatic tumors in very select cases after maximal therapy (controversial).

What approach with RT is optimal for PCA? Typical dose distribution for SBRT vs conventional IMRT

BRT Planning & Delivery

Treatment Plan (5-6.6 Gy x 5 fractions)

SBRT Dose Volume Histogram

Body/Tail Example

11

MD Anderson | Modern SBRT Treatment Devices

ucial

MD Anderson

Free-Breathing Fiducial

^{MD Anderson |} Breath Hold CT on Rails with tracking

MD Anderson

Breath Hold Video CT on Rails with Fiducials

MD Anderson | Review of Innovative Radiation Therapy Approaches

28

MR guided RT

SBRT (hypofractionated) vs. Standard RT

- · Achieve sharper dose fall-off gradients to normal tissue
- Less acute toxicity, short course (< 1 week)
- Can be combined with other modalities
- Quality of life (1 week)
- · Less lymphopenia
- Radiobiology more favorable?
- Anatomy may preclude ability to deliver full dose
- Higher late toxicity?
- Smaller fields?

MD Anderson

Original Article

Phase 2 Multi-institutional Trial Evaluating Gemcitabine and Stereotactic Body Radiotherapy for Patients With Locally Advanced Unresectable Pancreatic Adenocarcinoma

Joseph M. Herman, MD¹; Daniel T. Chang, MD²; Karyn A. Goodman, MD³; Avani S. Dholakia, MD¹; Siva P. Raman, MD⁴; Amy Hacker-Prietz, PA-C¹; Christine A. Iacobuzio-Donahue, MD⁵; Mary E. Griffith, RN¹; Timothy M. Pawlik, MD⁶; Jonathan S. Pai, BA²; Eileen O'Reilly, MD⁷; George A. Fisher, MD⁶, Aaron T. Wild, MD¹; Lauren M. Rosati, BS¹; Lei Zheng, MD⁶; Christopher L. Wolfgang, MD⁶; Daniel A. Laheru, MD⁶; Laurie A. Columbo, RN²; Elizabeth A. Sugar, PhD¹⁰; and Albert C. Koong, MD, PhD²

Herman JM et al. Cancer 2015

Phase II Multi-institutional Trial: SBRT Toxicity and QOL

cT2-4/N0-1/M0 adenocarcinoma of the pancreas diagnosed from 2004 to 2013 were analyzed

Among 8450 patients, 7819 (92.5%) were treated with CFRT, and 631 (7.5%) underwent SBRT.

Radiation therapy delivered at ≤ 2 Gy was deemed CFRT, and radiation therapy delivered at ≥ 4 Gy per fraction was considered SBRT.

CONCLUSIONS: SBRT was associated with superior OS in comparison with CFRT for LAPC, and these findings remained significant in a propensity-matched analysis.

MD Anderson

Prospective SBRT Pancreas Trials: Mostly LAPC

Table I Prospective studies of stereotactic body radiation therapy for pancreatic cancer

Study	Regimen	Patients (n)	l-year local control (%)	Median OS (months)	Acute toxicity grade 3+ (%)	Late toxicity grade 2+ (%)
Koong et al ¹⁰	15–25 Gy/1 fx	15 LA or LR	100	н	0	NR
Koong et al ¹¹	45 Gy IMRT +5-FU \rightarrow 25 Gy/I fx	16 LA	94	8.3	13	NR
Høyer et al ¹⁶	15 Gy ×3	22 LA	57	5.4	79 grade 2+	94
Schellenberg et al ¹²	Gemcitabine $ ightarrow$ 25 Gy/I fx $ ightarrow$ gemcitabine	16 LA	100	11.4	6	47
Polistina et al ¹⁷	10 Gy ×3	23 LA	50	10.6	0	0
Schellenberg et al ¹³	Gemcitabine $ ightarrow$ 25 Gy/I fx $ ightarrow$ gemcitabine	20 LA	94	11.8	5	20
Tozzi et al ⁴⁶	Gemcitabine $ ightarrow$ 45 Gy/6 fx or 36 Gy/6 fx	30 LA or LR	77	11	0	0
Gurka et al ¹⁸	Gemcitabine \rightarrow 25 Gy/5 fx \rightarrow gemcitabine	10 LA	40	12.2	0	0
Herman et al ¹⁹	Gemcitabine \rightarrow 33 Gy/5 fx	49 LA	78	13.9	12	11

Note: Arrows demonstrate sequence of the treatment regimen. Abbreviations: 5-FU, 5-fluorouracii; fx, fraction; Gy, gray; IMRT, intensity modulated radiotherapy; LA, locally advanced; LR, locally recurrent; NR, not reported; OS, overall survival.

Hong...Palta. Oncotargets and Therapy 2016

Pancreas Cancer Treatment Strategies

Resectable

- Surgery \rightarrow chemo
- Surgery \rightarrow chemo \rightarrow chemo/RT
- Chemo \rightarrow Surgery \rightarrow chemo
- Chemo \rightarrow +/- RT \rightarrow surgery

Borderline Resectable

- Chemo \rightarrow surgery??
- Chemo/RT \rightarrow surgery??
- Chemo \rightarrow +/- RT \rightarrow surgery

Locally Advanced

- Chemo
- Chemo/RT
- Chemo → chemo/RT
- Chemo \rightarrow +/-RT \rightarrow surgery??

MD Anderson

Localized pancreas cancer

37

Resectable Disease: Adjuvant/Neoadjuvant

MD Anderson

Role of Radiation after Surgery: Margin-Positive= Poor Survival

Institution	Margin + Resection Rate	Median OS (R2)	Median OS (R1)	Median OS (R0)				
Mayo Clinic ¹	24%	10	15	18-19				
Hopkins ²	42%		14	20				
MGH ³	30%	11	15	22				
Fatima J et a, Arch Surg, 2010 Winter JM et al, J Gastrointest Surg, 2006 Konstandinidis et al, GI ASCO 2010								
Goal of radiation is to achieve a MARGIN-NEGATIVE (R0) resection								

Table courtesy of Dr. Christopher Crane (MDACC)

40

Adjuvant Chemotherapy

MD Anderson | Review of Innovative Radiation Therapy Approaches

Adjuvant Chemotherapy +/- Radiation Therapy

Adjuvant Radiation Therapy

Standard dose chemoradiation (5-6 weeks):

- · Duration of systemic chemotherapy is limited
- Is unlikely to sterilize positive margins
- Role is controversial (RTOG 0848)

Local progression is common:

At autopsy 30% die of local disease only

Can Stereotactic body radiation therapy (SBRT) be delivered in the adjuvant setting?

• What volume(s) are covered?

Prevent: Mapping area of Local Recurrences after surgery (+/- radiation)

Dholakia et al. 2013

Pancreatic Vaccine, Low Dose Cytoxan, Fractionated SBRT, and FOLFIRINOX Chemotherapy in Patients with Resected Pancreatic Adenocarcinoma

Phase I Study of Proton Therapy in Adjuvant Pancreatic Cancer (PROTON-PANC)

ClinicalTrials.gov Identifier: NCT03885284

Resectable Disease: Benefits of Neoadjuvant Therapy

Increases likelihood of R0 resection (particularly in borderline pts)

Avoids unnecessary surgery in those less likely to benefit

Minimizes delays in treatment/compliance

Smaller treatment fields/tumor delineation

Improves tumor related symptoms

Palta et al Oncology 2011

47

MD Anderson | Review of Innovative Radiation Therapy Approaches

PREOPANC: Surgery vs. Neoadjuvant Therapy

49

Borderline Resectable Disease

MD Anderson

Which Patients Should Be Taken to Surgery Following Neoadjuvant Therapy?

Most tumors do not "shrink" after neoadjuvant therapy

J Radiat Oncol (2013) 2:413–425 DOI 10.1007/s13566-013-0115-6 ORIGINAL RESEARCH

Resection of borderline resectable pancreatic cancer after neoadjuvant chemoradiation does not depend on improved radiographic appearance of tumor-vessel relationships

Avani S. Dholakia • Amy Hacker-Prietz • Aaron T. Wild • Siva P. Raman • Laura D. Wood • Peng Huang • Daniel A. Laheru • Lei Zheng • Ana De Jesus-Acosta • Dung T. Le • Richard Schulick • Barish Edil • Susannah Ellsworth • Timothy M. Pawlik • Christine A. Iacobuzio-Donahue • Ralph H. Hruban • John L. Cameron • Elliot K. Fishman • Christopher L. Wolfgang • Joseph M. Herman

Neoadjuvant Therapy Improves Outcomes in BRPC

		80-90	% R() resectior	n rate	↓	↓
Study	n	Resectability (Criteria)	RT Dose (Gy)	Chemotherapy Regimen	Resection Rate (%)	R0 Resection Rate (%)	Median OS (mo)
oensuu et al (2004) ⁸⁷ ipas et al (2005) ⁴³	28 24	BR (MDACC) Res (1 7%) BR (29%) Unres (54%)	50.4 50.4	$\begin{array}{c} \text{Gem} \\ \text{Doc} + \text{Gem} \rightarrow \text{Gem} \end{array}$	75" 71	76	25.0 14.0
alamonti et al (2006) ⁴⁴	20	Res (70%, Con) BR (30%, Con)	36	Gem	85	94	18.0 (Res 26.0)
aradhachary et al (2008) ⁴	79	Res (MDACC)	30	$Gem + Cis \rightarrow Gem$	66	96	18.7 (Res 31.0 Unres 10.5, P < .001)
nall et al (2008) ⁴⁶	39	Res (41%) BR (23%) Unres (36%)	36	Gem	44	-	-
rans et al (2008) ⁴⁷	86	Res (MDACC)	30	Gem	74	86 [±]	22.7 (Res 34.0 Unres 7.0, P < .001)
Lind et al (2008) ¹⁰⁹ Katz et al (2008) ¹⁰ Maximous (2009) ¹¹⁰ Landry (2010) ⁶⁷	17 84 25 10 11	BR (Con) BR (MDACC) Unres BR (Con) BR (Con)	50.4 30-50.4 54 50.4 50.4	Cap + Ox 5-FU, Pac, Gem, Cap Gem A) Gem B) 5-FU (induction	47 38 32 30 18	100 97 25 33 50	19.0 21.0 (Res 40.0 Unres 15.0) 12.0 19.4 (Res 26.3) 13.4 (Res 26.3)
Piperdi et al (2010) ¹¹¹ Turrini et al (2010) ⁴⁸ Stokes et al (2011) ¹¹² Leone et al (2012) ¹¹³	8 34 34 39	BR (MDACC) Res (Con) BR (MDACC) BR (38.5%, Con) Unres (61.5%)	50.4 45 50.4 50.4	$5-FU \text{ or Gem}$ Doc Cap $Gem + Ox \rightarrow Gem$	75 50 46 36	100 100 75 64 (82% BR, 18' Unres)	16.1 [†] (No tx 14.0) 15.5 (Res 32.0) Res 23.0 Unres 12.0 % BR 27.8 Unres 12.3 P = .045
pas et al (2012) ⁴⁹	33	Res (12%) BR (70%, Con) Unres (18%)	54	Cetux → Gem + Cetux	76 (16% Res, 72% BR, 12% Unres)	92	17.3 (Res 24.3 Unres 10.0)
bermehl et al (2012) ¹¹⁴	198	Unres	Med 52.2	Gem	26	39	12.3 (R0 Res 22.1 Unres 11.9, P = .003)
oi et al (2012) ⁵⁰	34	Res BR (Con) Unres	50.4	S-1	88	93	-
n et al (2013) ⁶⁵ kahashi et al (2013) ¹¹⁵ n Buren et al (2013) ⁵¹	39 80 59	BR (NCCN) BR (Con) Res (50%), BR (50% (Con)	30 50 30	Gem + Ox Gem Gem + Bev	62 54 73	84 98 88	18.4 (Res 25.4) Res. 25.0 Unres 14.0 16.8 (Res 19.7)
uchi et al (2014) ⁵²	21	Res	50.4	Gem + S-1	91	-	-

Franke et al, Sem Oncol 2015

Does multi-agent chemotherapy combined with SBRT improve the likelihood that patients with <u>LAPC or</u> <u>Borderline resectable PCA</u> will undergo surgery?

Outcome of Patients with Borderline Resectable Pancreatic Cancer in the Contemporary Era of Neoadjuvant Chemotherapy

Ammar A. Javed^{1,2}, Michael J. Wright^{1,2}, Ayat Siddique^{1,2}, Alex B. Blair^{1,2}, Ding Ding^{2,3}, Richard A. Burkhart^{1,2}, Martin Makary^{1,2}, John L. Cameron^{1,2}, Amol Narang^{2,4}, Joseph Herman^{2,4}, Lei Zheng^{2,3}, Daniel Laheru^{2,3}, Matthew J. Weiss^{1,2}, Christopher Wolfgang^{1,2}, and Jin He^{1,2}

¹Department of Surgery, The Johns Hopkins University School of Medicine, 600 N. Wolfe Street, Halsted 614, Baltimore, MD 21287, USA

• 51% received RT, RO resection 77%

J Gastrointest Surg. 2019 January

MD Anderson

• SBRT up to 40 Gy in 5 to tumor vessel interface (TVI)

Kamrava M., Hodge JW., et al. Mol. BioSyst., 2009 - Adapted with Permission (Andrew Sharabi)

<u>Enhance:</u> Vaccine/anti-PD-1 Antibody(Pembrolizumab) with Stereotactic Body Radiation following induction chemotherapy for locally Advanced PDAC

Lee, Jaffee Laheru, and Zheng: JHU

59

MD Anderson | Review of Innovative Radiation Therapy Approaches

Locally Advanced or Unresectable Disease

MD Anderson

Role of Radiation Therapy in Locally Advanced Disease (LAPC)?

GERCOR LAP-07 Trial

Hummel et al, JAMA 2016

What Is The Role of Neoadjuvant Therapy in LAPC?

Radiographic evidence of tumor downstaging is not required for surgical evaluation

Under multidisciplinary review, consider the following:

- 1. \geq 4 months of chemotherapy and no **distant metastases**
- 2. Good performance status/no limiting comorbidities
- 3. Stable or improved CA 19-9, "technically resectable"
- 4. Ideally, <12 weeks after SBRT

Katz MH, et al. *Cancer*. 2012;118(23):5749-5756 Dholakia AS, et al.. *J Radiat Oncol*. 2013 Dec;2(4):413-25

Houston area locations only

MD Anderson | What RT dose/fractionation is optimal for ablation (unresectable) or to prevent recurrence (resectable)?

Biological equivalent dose (BED) of ~100+ likely needed for adequate sterilization (durable) of the tumor and/or vessel margin

Optimal is unknown

3 fractions (42 Gy)

5 fractions (50 Gy)

15 Fractions (69 Gy)

25 Fractions (75 Gy)

Often depends on anatomy

66

MD Anderson | Review of Innovative Radiation Therapy Approaches

Pancreas RT regimen comparisons (selection)

Conditions	Stereotactic body RT (SBRT) 5 Fx	Hypofractionation (Hypofx) 15 Fx	Standard (CRT) 25-30 Fx
GTV Goal (90Gy/BED)	50 Gy	67.5 Gy	75 Gy
Concurrent chemo	Rarely	Often	Almost always
Chemo concurrent	Capecitabine	Capecitabine/Gem	Capecitabine/Gem
Tumor <i>Invades</i> Bowel or Stomach*	Only if surgery guaranteed	Unknown risk of bleed/perforation	Assume less risk of bleed/perforation
Tumor <i>abuts</i> Bowel or stomach	If 90% of GTV can receive BED>90?	If GTV BED>90 not met with SBRT	If GTV BED>90 not met with hypofx
LN covered?	Proximal only	Yes	Yes
LRR recurrence risk*	++	++	+
Lymphopenia risk*	+	++	+++
Early/Late tox risk*	+/++	++/++	++/+
Patient time/cost*	+++ (Benefit)	++	+

*Limited data thus far, hypothesized

10/28/2019

MD Anderson

ABLATIVE RT RESULTS IN EXCELLENT LOCAL CONTROL AND SURVIVAL IN LOCALIZED PANCREATIC CANCER

M. Reyngold, E. O'Reilly, M Zinovoy, P. R. Romesser, A. J. Wu, C. Hajj, J.J. Cuaron, E.D. Yorke, A. M. Varghese, C. H. Crane

MSKCC

MD Anderson

Anatomy-based dose prescription

Distance to luminal GI tract	Fractionation scheme	BED a/b=10
< 1 cm	75Gy/25	97.5
> 1 cm	67.5Gy/15	97.88
> 2 cm	50Gy/5 (SBRT)	100

Adaptive re-planning in 10% based on daily CBCT

Definitive Cohort

N=136

Median follow up 16 mo

MD Anderson

Toxicity analysis

Toxicity Grade (CTCAE 4.03)	N (% of total)
UGI hemorrhage Grade 3	14 (8%)
Duodenal fistula Grade 1	1 (0.6 %)
Duodenal ulcer Grade 2	1 (0.6 %)
Bile duct stenosis Grade 3	5 (3%)
Vertebral body fractures Grade 2	4 (2%)

<u>Protect</u>: 2017-0606: An Adaptive Phase I/II Dose Escalation Trial of Stereotactic Body Radiation Therapy with a Radiomodulating Agent GC4419 (Galera) in Locally Advanced Pancreatic Cancer

Three SBRT Dose Levels

• Plan to proceed to multicenter study 55 Gy in 5, BED 116 Gy

SBRT plan of patient on protocol 2017-0606 who received 50Gy/5fx to the tumor in the pancreatic head. Endoscopy from Week 12 post-SBRT showing normal duodenum (Grade 0 toxicity). Post-tx biopsy done.

Survival improved with higher RT dose and induction (IC) and concurrent (CC) chemotherapy $2 \text{ yr OS}{\sim}60\%$

Int J Radiation Oncol Biol Phys, Vol. 101, No. 5, pp. 1212-1221, 2018

SMART – LAPC Consortium analysis

44 patients from 5 institutions w/ unresectable pancreatic ca; median follow-up 22.1 months

maxBED10 point dose

OS and LC from date of diagnosis

OS and LC stratified by maxBED10 compared with KM and with log-rank tests

S. Rudra, M. Roach, L. Porterlance, A. Bruynzeel, F. Lagerwaard, M. Bassetti, P. Parikh, and P. Lee, under 2nd revision

Phase II Study: Dose-Escalated Adaptive <u>Stereotactic MRI-guided Ablative</u> <u>RadioTherapy</u> (SMART) for locally advanced pancreatic cancer

MD: Co DL D Dorille and D Loo	
Physics: O. Green, D. Low	Inoperable and borderline inoperable pancreatic adenocarcinoma (PS 0-1)
Basic Eligibility	Patient enrollment after confirming
Inoperable and borderline inoperable pancreatic	eligibility
PS 0-1	•
No contraindications to MRI	(Utilizing DIBH or DEBH)
At least 12 weeks of systemic therapy prior to enrollment	
Schema	50 Gy in 5 fractions SABR (With adaptive planning as needed)
50 Gy /5 fractions real-time adaptive SABR	•
	Toxicity Assessment at 90 and 180 days

MD Anderson

Sensitize: DDR: VelGemRad – NCT01908478

Phase I study: ABT-888 (VELiparib) in combination with GEMcitabine and IMRT for LAPC

- (2.4 Gy/day, M-F)
- Veliparib: administered per dose escalation schema

- 1° Objective: to determine the MTD, safety and toxicity profile
- 2° Objectives:

 $_{\circ}$ Measure the clinical activity of the treatment (PFS, OS)

 $_\circ$ Evaluate tumor/blood pre/during/post treatment for DNA damage repair alterations, PAR levels and immune mediators

Ref: Tuli et al. EBioMedicine, https://doi.org/10.1016/j.ebiom.2018.12.060

DDR: VelGemRad – Transcriptome Analysis (OS)

Median OS (biomarker + versus biomarker -)

- NER 22 vs. 12 mos, p<.001
- MMR 18 vs. 12 mos, p<.05

Ref: Tuli et al. EBioMedicine, https://doi.org/10.1016/j.ebiom.2018.12.060

80

MD Anderson | Review of Innovative Radiation Therapy Approaches

Recurrent disease and Re-irradiation

Recurrent pancreas cancer and Re-irradiation

MD Anderson | Review of Innovative Radiation Therapy Approaches

82

Metastatic and Oligometastatic disease

• J Natl Compr Canc Netw. 2015 May;13(5):e29-36.

MD Anderson 84

<u>EXT</u>ernal beam radiation to <u>Eliminate</u> <u>Nominal metastatic Disease (EXTEND):</u> A randomized phase II basket trial to assess local control in the treatment of patients with oligometastatic disease

*Systemic therapy options include next line systemic therapy, maintenance therapy after an induction period, and continuing of the current line of systemic therapy. In the event that no reasonable standard of care systemic therapy options exist, patients can be treated with systemic therapy on a clinical trial or observed.

Chad Tang, PI MDA

Patient Selection: Which patients benefit from Radiation

Valero, Diehn, Koay, Iacobuzio-Donahue, et al.

MD Anderson

SBRT Tumor Response by PET

Patient had a pCR

Dholakia et al.

87

Select (clinical factors):

Original Article

OPEN

Factors Predicting Response, Perioperative Outcomes, and Survival Following Total Neoadjuvant Therapy for Borderline/Locally Advanced Pancreatic Cancer

Mark J. Truty, MD, MSc, FACS,* Michael L. Kendrick, MD,* David. M. Nagorney, MD,* Rory L. Smoot, MD,* Sean P. Cleary, MD,* Rondell P. Graham, MD,† Ajit H. Goenka, MD,¶ Christopher L. Hallemeier, MD,§ Michel G. Haddock, MD,§ William S. Harmsen, MS,|| Amit Mahipal, MBBS,‡ Robert R. McWilliams, MD,‡ Thorvardur R. Halfdanarson, MD,‡ and Axel F. Grothey, MD‡

FIGURE 2. Kaplan-Meier survival curves stratified by number of predictive factors achieved. A, RFS and factor score. B, OS and factor score. All curves significant, P < 0.001.

Key factors OS: >6 mos chemo, Ca 19-9 response, pCR (0/1) Annals Surg Onc 2019

MD Anderson

Localized pancreas cancer

Why ASTRO developed RT guidelines

MD Anderson

ASTRO Pancreas Cancer Guidelines: Delivery of Therapy

Strength of recommendation	Quality of evidence	Consensus
Conditional	Low	92%*
Strong	Very low	100%*
Conditional	Low	92%*
	Strength of recommendation Conditional Strong Conditional	Strength of recommendation Quality of evidence Conditional Low Strong Very low Conditional Low

Neoadjuvant Therapy Resectable Pancreas: Conditional

Palta, PRO 2019 in press

Summary

RT technology

MD Anderson

- New RT technologies allow for delivery of higher doses of RT with less toxicity
- RT dose based on biology, anatomy, expertise and technology (MR, particle therapy)
- BED >100 likely needed for ablation
- Multiple approaches to optimize dose and/or effectiveness
- Galera evaluating dose escalation (protection)
- Alliance SBRT BRPCA trial: Pending

SBRT Potentiation RT with PARP improves outcomes in select patients RT may enhance the tumor microenvironment RT causes lymphopenia, SBRT less Await results of SBRT with PD1 (JHU and SU2C) Optimal RT dose and timing unknown Need to simplify trials to enhance enrollment

Need biomarkers to determine which patients need RT.

MD Anderson | Review of Innovative Radiation Therapy Approaches

92

91

How do we maximize the therapeutic benefit(s) of radiation therapy in localized PCA?

• Goals: Achieve a pathologic complete response. R0 resection AND prevent local regional recurrence. Limit side effects, improve quality of life, and be cost-effective.

1. <u>Select</u> regimen based on anatomy, biomarkers, performance status, and patient/family preference.

2. <u>Avoid</u> radiation dose to adjacent normal tissues or <u>protect</u> bowel/stomach.

3. <u>Radiobiology:</u> Heavy Ions (protons/Carbon) give better radiobiological equivalent (RBE) dose to tumor with sharp fall-off of RT dose.

4. Adapt: use (CT on rails, PET, or MR) to better visualize tumor and nl tissues.

5. <u>Sensitize:</u> the effects of RT with Parp inhibitors or other drugs/agents.

6. Enhance: the tumor microenvironment for immunotherapy.

7. <u>Prevent:</u> recurrence after surgery or local progression after chemo/RT.

MD Anderson | Review of Innovative Radiation Therapy Approaches

Ongoing clinical trials

Study	Phase	Location	Description	Stage	Primary Outcome	(Gy)	No. Fractions	Gy/Fx	BED ₃	BED ₁
NCT02873598	1	Denver, CO	Dose escalation of SBRT+FOLFIRINOX or gem/abraxane	LAPC	MTD, DLTs	27	3	9	108	51.3
	_	_	_	_	_	30		10	130	60
	_	_	_	_	_	33	_	11	154	69.3
NCT02643498	1	NYC, NY	SBRT after induction chemo	LAPC	MTD, DLTs	27	3	9	108	51.3
	_	_		_	_	30		10	130	60
	_	_	_	_	_	33	_	3	154	69.3
	_	_	_	_	_	42	6	7	140.0	71.4
	_	_	_		_	54	12	4.8	135.0	78.3
						67.5	15	4.5	168.8	97.9
NCT03158779	2	Milan, Italy	SBRT+FOLFIRINOX or gem/abraxane	LAPC	MTD, DLTs	54	6	9	216	102.6
NCT02454140	1	San Diego, CA	Dose escalation of SBRT	LAPC	MTD	40	5	8	146.6	72
	_	_	_	_	_	45	_	9	180	85.5
		_			_	50		10	216.6	100
	_	_	_	_	_	55	_	11	256.6	115.5
		_	_	_	_	60		12	300	132
NCT01926197	3	Palo Alto, CA	FOLFIRINOX ± SBRT	LAPC	PFS	NR	NR	NR	_	_
NCT02128100	2	Louisville, KY	FOLFIRINOX+SBRT	LAPC	Toxicity up to 24 mo posttreatment	32	5	6.5	101.3	52.8
NCT02734680	NR	Beijing, China	IORT followed by CCRT or SBRT, then S-1*	LAPC	OS	45	15	3	90	58.5
NCT02648282	2	Baltimore, MD	CY, Pembrolizumab, GVAX, followed by SBRT	LAPC	DMFS	33	5	6.6	105.6	54.8
NCT02461836	2	Zhejiang, China	Gem+SBRT after radical T3 or N1 resection	Resectable	DFS	25	5	5	66.7	37.5
NCT02347618	2	Rochester, NY	Short course of preoperative SBRT	Resectable	Grade ≥2 toxicity up to 24 mo	NR	NR	NR	_	—
NCT02308722	1	Glasgow, UK	Preoperative SBRT dose escalation ⁺	BRPC	MTD	30	5	6	80	45
	_	_	_	_	_	32.5	5	6.5	102.9	53.4
	_	_	_	_	_	35	5	7	116.6	59.5
NCT02704156	2	Shanghai, China	5 fraction SBRT	LAPC	MST	45±	5	9	180	85.5
NCT01342354	1	Chicago, IL	Dose escalation of SBRT	Unresectable, LRPC	MTD	NR	NR	NR	_	_
NCT01872377	î	Ottawa, Canada	Dose escalation SBRT boost	LAPC	Grade 3-4 GI toxicity up to	18	3	6	54	28.8
					36 mo					

MD Anderson | Review of Innovative Radiation Therapy Approaches

Ongoing clinical trials: part 2

Study	Phase	Location	Description	Stage	Primary Outcome	(Gy)	No. Fractions	Gy/Fx	BED ₃	BED ₁₀
NCT02416609	NR	Modena, Italy	LDR+GemOx and SBRT	LAPC	PFS	NR	NR	NR	_	_
NCT02704143	2	Shanghai, China	SBRT with S1	LAPC	MST	NR	NR	NR	_	-
NCT02868632	1	NYC, NY	SBRT with durvalumab ± tremelimumab	Unresectable	OS	30	5	6	90	48
NCT02208024	1	Cincinnati, OH	5 fraction SBRT	Resectable	Acute grade ≥ 3 toxicity	33	4	6.6	105.6	54.8
NCT01918644	1	Madison, WI	Preoperative cape+SBRT	Resectable	DLT	NR	NR	NR	_	
NCT01959672	2	Omaha, NE	Neoadjuvant chemo ± oregovornab with concurrent SBRT+nelfinavir	Resectable, BRPC, LAPC	Rate of disease progression	NR	5	NR	_	_
NCT01781728	2	Baltimore, MD	Palliation with SBRT	LRPC, residual disease	Late grade >2 toxicity	33	5	6.6	105.6	54.8
	_	_	_	_	_	25	5	5	66.7	37.5
NCT03099265	2	New Haven, CT	Neoadjuvant mFOLFIRINOX+SBRT	BRPC	R0 resection rate	33	5	6.6	105.6	54.8
NCT03073785	2	Omaha, NE	SBRT+5-FU or cape ± zoledronic acid	LAPC	LC at 4 mo	NR	5	NR	_	_
NCT02311361	1	Bethesda, MD	Dose escalation of SBRT with durvalumab and/ or tremelimumab	Unresectable	Adverse event frequency	8	1	8	29.3	14.4
	_	_	_	_	_	25	5	5	66.7	37.5
NCT02241551	2	Pittsburgh, PA	Gem/nab-paclitaxel or FOLIRINOX+SBRT	BRPC	Safety of Gem/abraxane, R0 resection rate, pCR	NR	NR	NR	-	_
NCT02950025	2	St. Louis, MO	Online adaptive vs. nonadaptive SBRT	Unresectable,	Grade ≥ 3 toxicity	50	5	10	216.6	100
NCT02870648	1	Indianapolis, IN	Respiratory-gated SBRT	Resectable, BRPC, LAPC	Acute grade \geq 3 toxicity	33	5	6.6	105.6	54.8
	_		_	_	_	30	5	5	90	48
NCT02723331	2	Denver, CO	Perioperative Gem/abraxane followed by SBRT	Resectable, BRPC	R0 resection rate	NR	NR	NR	_	_
NCT02153450	1	Cleveland, OH	SBRT+metformin	BRPC, LAPC	DLT	NR	NR	NR	_	-
NCT01357525	2	Pittsburgh, PA	SBRT following R1 or close margin resection	Resectable	LPFS	36	3	12	180	79.2
NCT03245541	1 and 2	Los Angeles, CA	Durvalumab+SBRT	LAPC, BRPC	DLT, PFS	30	5	6.6	105.6	54.8

93

94

10141

MD Anderson Cancer Center

Making Cancer History®

Surgical Oncology

Jeffrey E. Lee, MD Matthew Katz, MD Ching-Wei Tzeng, MD Naru Ikoma, MD

Radiation Oncology

Joe Herman, MD Albert Koong, MD, PhD Eugene Koay, MD, PhD Cullen Tanaguchi, MD, PhD Grace Smith, MD

Gastroenterology

Manoop Bhutani, MBBS Jeffrey H. Lee, MD, MPH William Ross, MD Brian Weston, MD Emmanuel Coronel, MD Phillip Ge, MD

Pathology

Anirban Maitra, MBBS Huamin Wang, MD

Medical Oncology

Robert A. Wolff, MD Shubham Pant, MD Florencia McAllister, MD Gauri Varadhachary, MD David Fogelman, MD Linus Ho, MD Michael Pishvaian, MD

Diagnostic Imaging

Eric Tamm, MD

MD Anderson

Johns Hopkins

Things to know and ask. A patients perspective.

- Get a second opinion (PANCAN)
- There is always hope
- Find oncologists who have treated a substantial # of patients with PC
- Your institution(s) need a team and tumor board that reviews your case often
- Read read up on the disease
- Be able to access your medical records
- Know where your tumor is located, stage
- What are the side effects and how you can prepare to manage them?
- Remember this is your JOURNEY and YOU are your best ADVOCATE!
- Look at Trials
- Remember everyone's PC is unique
- Exercise, know what and how to eat
- Pancreas enzymes, pain management

I am fighting this disease for myself and others. My goal is to help and guide other PC patients through this difficult journey!

Thank you!

- JHU: Chris Wolfgang, Liz Jaffee, Dan Laheru, Valerie Lee, Jin He, Lei Zheng, Linda Chen, and Amol Narang (rest of MDC team)
- Ted Hong, MGH
- George Miller, NYU
- Parag Parikh, Wash U.
- MSKCC: Linda Chen, Chris Crane
- Percy Lee: MDACC

MD Anderson

SU2C Neoadjuvant Study Team

Grant PI- David Ryan (MGH)

Grant Co-PI- Alec Kimmelman (NYU)

Study PI- Ted Hong (MGH)

Translational lead (Organoids)-Rick Burkhart (JHU)

Translational lead (liquid biopsies) - David Ting (MGH)

Project Manager- Leilana Ly (MGH) Participating Institutions

- Massachusetts General Hospital
 - Dana-Farber Cancer Institute
 - Beth Israel-Deaconess
- · New York University
- · Johns Hopkins University
- MD Anderson
- · University of Colorado

