

Pancreatic Neuroendocrine Tumors

December 15, 2015

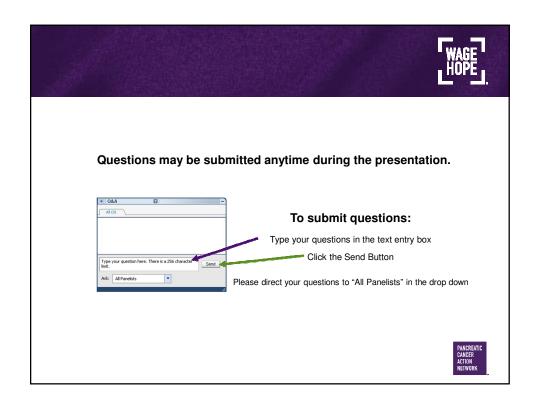
If you experience technical difficulty during the presentation:

Contact WebEx Technical Support directly at: US Toll Free: 1-866-779-3239 Toll Only: 1-408-435 -7088

or

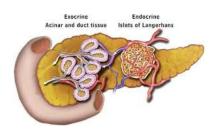
Submit a question to the Event Producer via the Q&A Panel

For international support numbers visit: http://support.webex.com/support/phone-numbers.ht



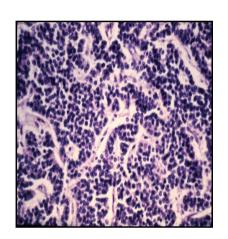
Thank you to our webinar sponsor:

www.lillyoncology.com


Objectives

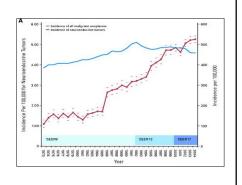
- Review the diagnosis and epidemiology of pancreatic NET
- Review principles for management of pancreatic NET
- Discuss future directions for treatment and research

Pancreatic Cancer Subtypes


- Pancreatic NET is a different disease than pancreatic adenocarcinoma
 - Arise from different cells
 - Different prognoses
 - Different treatment options

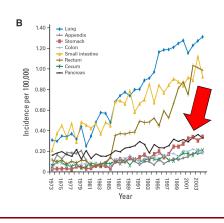
Neuroendocrine Tumors

- Arise from cells in the diffuse neuroendocrine system throughout the body
- May pursue more indolent clinical course than other malignancies
- Ability to secrete peptides that may result in characteristic symptoms of hormone hypersecretion



NET: Incidence Is Increasing

- Recent estimates of 5 per 100,000 population
- Increasing incidence likely due to improved awareness, classification, and diagnostic modalities



Yao JC, et al. J Clin Oncol. 2008;26:3063-3072.

Pancreatic NET: Epidemiology

- 3-5% of all pancreatic malignancies
- Incidence 0.32/100,00 population. Higher incidence in autopsy series.
- >50% with metastatic disease at diagnosis

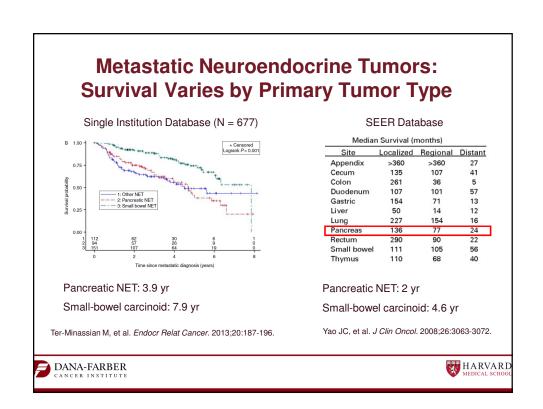
Yao JC, et al. J Clin Oncol. 2008;26:3063-3072.

Pancreatic NET: Genetics

- Most pancreatic NET are sporadic and not linked to a cancer genetics syndrome
- More rarely arise in the context of genetic syndrome
 - MEN1: hyperparathyroidism, pituitary adenoma, carcinoid tumors of lung, thymus
 - TSC2: subependymal giant-cell astrocytoma, angiomyolipoma
 - VHL, NF1

Key Features of NET

- Pathologic features
 - Grade
 - Differentiation
- Primary site
 - Pancreatic NET
 - "Carcinoid": GI, lung, thymus
- Functional (hormone secreting) status


Neuroendocrine Tumors: Histologic Classification

Differentiation	Grade	Mitotic Count	Ki-67 Index	WHO ENETS
Well differentiated	Low (G1)	< 2 per 10 HPF	≤ 2%	Neuroendocrine tumor, grade 1
	Intermediate (G2)	2-20 per 10 HPF	3-20%	Neuroendocrine tumor, grade 2
Poorly differentiated	High (G3)	> 20 per 10 HPF	>20%	Neuroendocrine carcinoma, grade 3, small cell
				Neuroendocrine carcinoma, grade 3, large cell

NET Grade Correlates With Prognosis * 285 patients with metastatic pancreatic and midgut NET * Higher-grade disease correlates with poor survival * Khan MS, et al. Br J Cancer. 2013;108:1838-1845.

NET: Differences by Primary Site

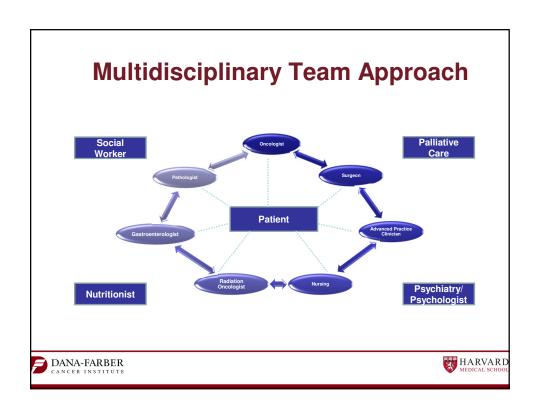
- · Survival varies by primary tumor site
- Pancreatic NET are more responsive to cytotoxic chemotherapy and targeted agents

Distinct treatment approaches and clinical trials for pancreatic and non-pancreatic NET

Pancreatic NET: Functional Status

- 60%–70% "non-functioning"
- 30%–40% associated with hormone hypersecretion
- Symptoms defined by hormone secreted

	Symptoms
Gastrinoma	Gastric ulcers, diarrhea
Glucagonoma	Skin rash (necrolytic migratory erythema), hyperglycemia
Insulinoma	Hypoglycemia
VIPoma	Diarrhea, hypokalemia

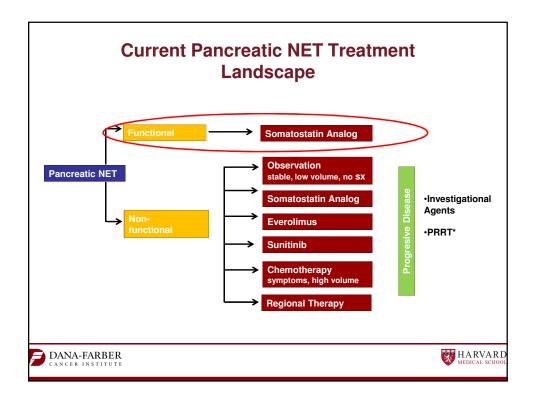


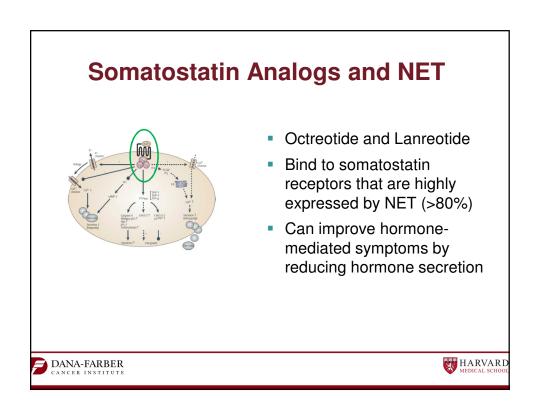
Neuroendocrine Tumors: Management Principles

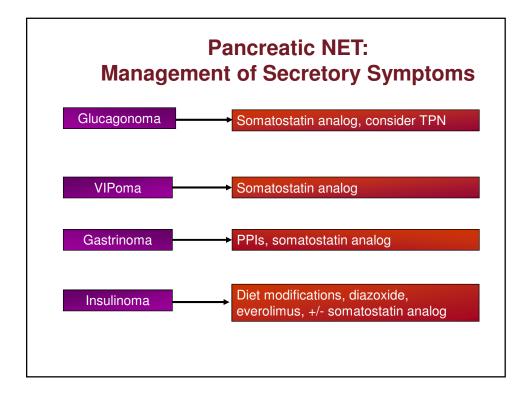
- Resection of localized and limited metastatic disease
- Advanced disease
 - Control of hormone secretion for functional tumors
 - Control of growth of disease

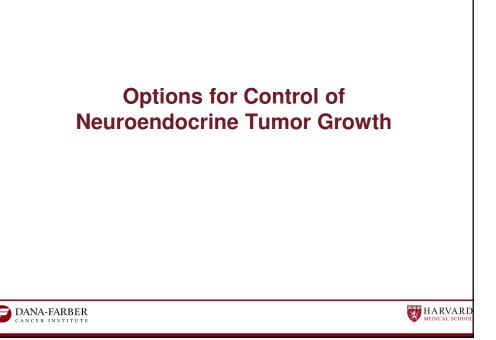
Pancreatic NET: Surgical Resection

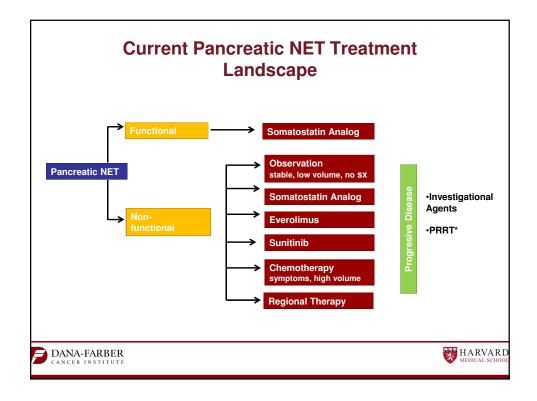
- Enucleation, distal pancreatectomy, or Whipple depending on tumor size/location
- Multiple neoplasms common in MEN-1
- Prognosis good when complete resection performed

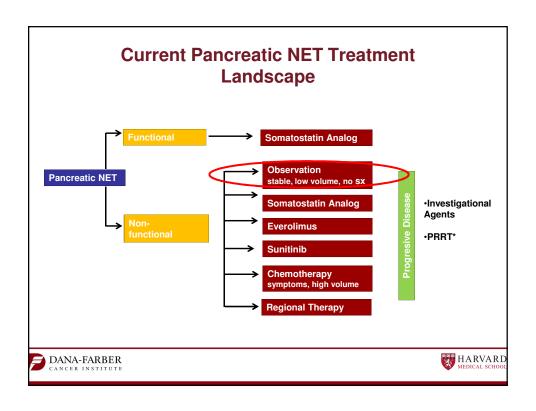

Metastatic NET:Surgical Resection

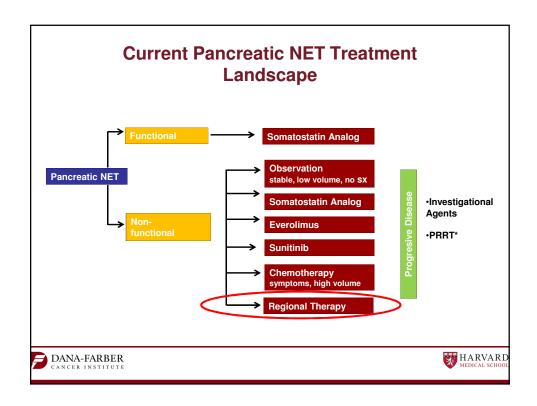

Hepatic resection considered for limited liver metastases

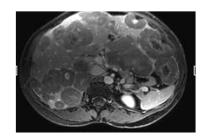


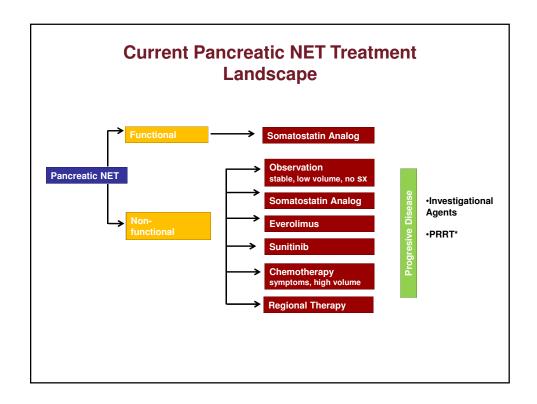


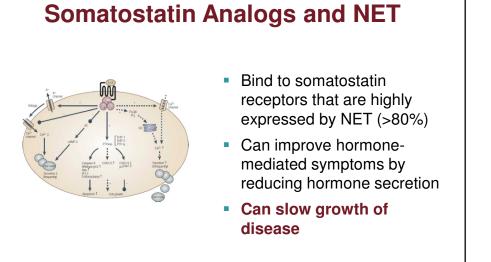


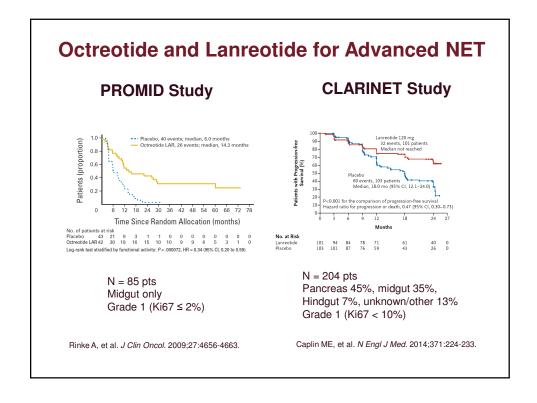







Metastatic NET: Liver-Directed Therapies


Hepatic resection considered for limited hepatic metastases...



Hepatic artery embolization considered for patients with liver predominant disease that is not resectable

Potential Somatostatin Analog-Related Side Effects

- Glucose regulation disorders
 - -Hypoglycemia, hyperglycemia
- Thyroid disorders
- Cardiovascular disorders
- B₁₂ deficiency
- Gallbladder disease: Cholelithiasis and gallbladder sludge

Streptozocin-Based Therapy for Pancreatic NET

- Streptozocin/doxorubicin associated with survival benefit compared to streptozocin/5-FU (2.2 vs. 1.5 years)
- Response rates 30%–40% in retrospective series
- Current use limited by side effect profile and schedule of treatment

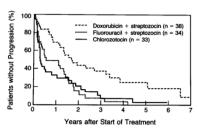
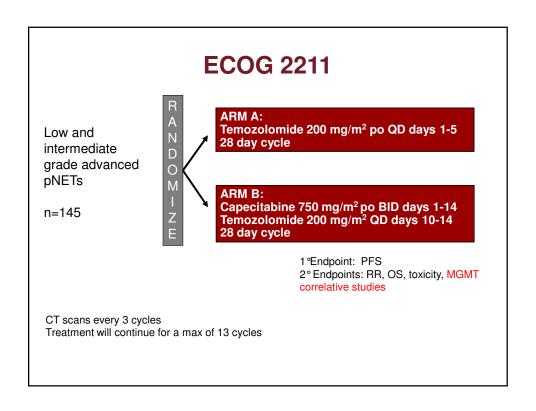
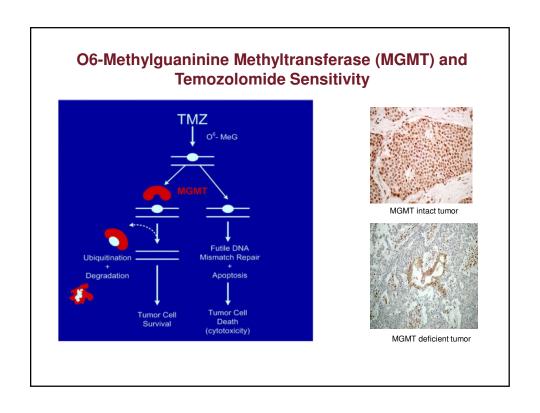


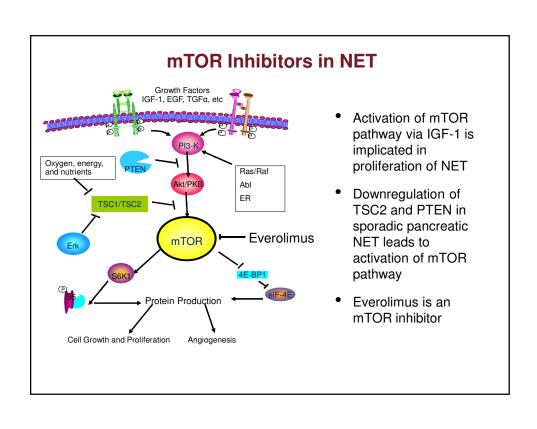
Figure 2. Length of Time to Disease Progression, According to Treatment Group.

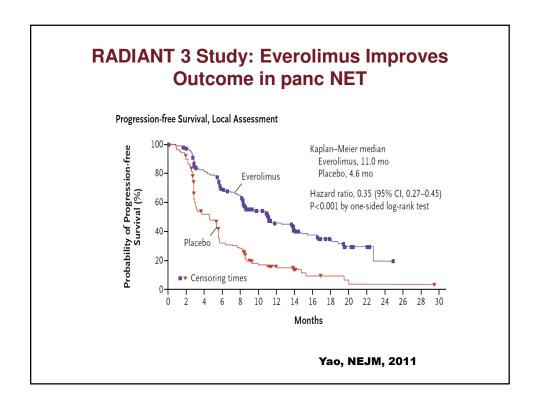

P<0.001 for the comparison between doxorubicin plus streptozocin and fluorouracil plus streptozocin; P<0.001 for the comparison between doxorubicin plus streptozocin and oblerozocionio.

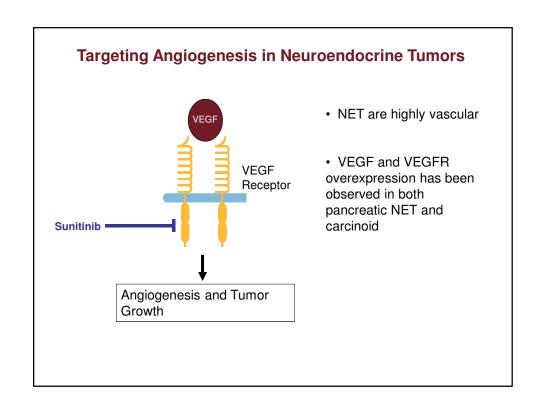

CG Moertel et al, N Engl J Med 1992; 326: 519-23

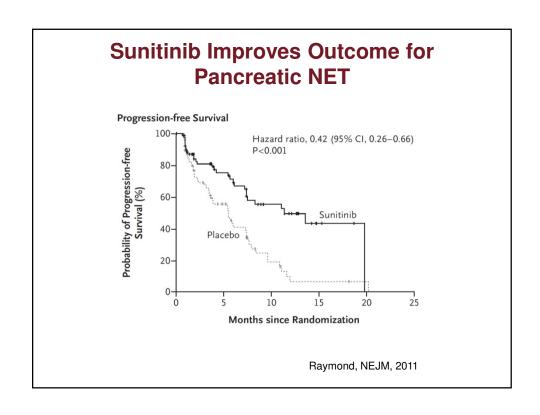
Temozolomide-Based Therapy in Pancreatic NET

Regimen	N	RR	TTP/PFS (mo)	Reference
Retrospective Series				
Tem	12	8%	NR	Ekeblad, Clin Cancer Res 2007
Tem/Capecitabine	30	70%	18	Strosberg, Cancer 2011
Tem (various regimens)	53	34%	13.6	Kulke, Clin Cancer Res 2009
Prospective Trials				
Tem/Thalidomide	11	45%	NR	Kulke, JCO 2006
Tem/Bevacizumab	15	33%	14.3	Chan, JCO 2012
Tem/Everolimus	40	40%	15.4	Chan, Cancer 2013
Tem/Capecitabine	11	36%	>20	Fine, ASCO GI 2014

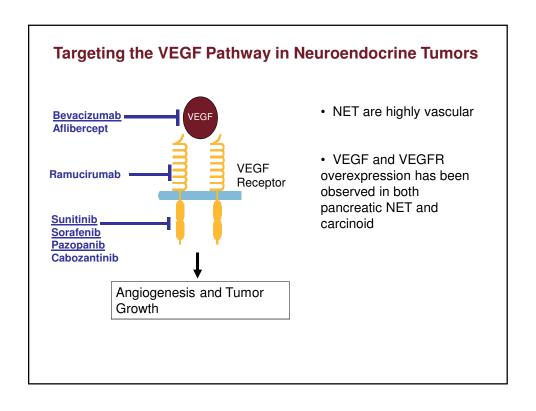

RR 33%-70%; PFS 13.6-18+ mo

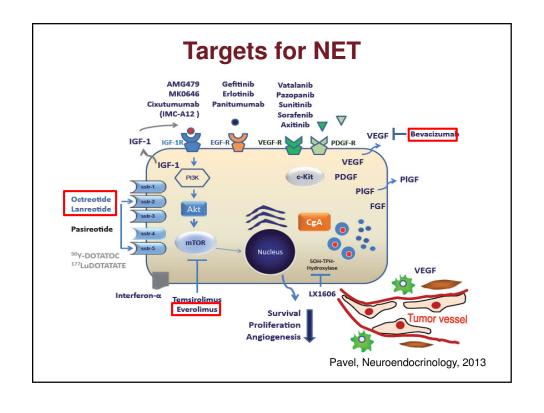


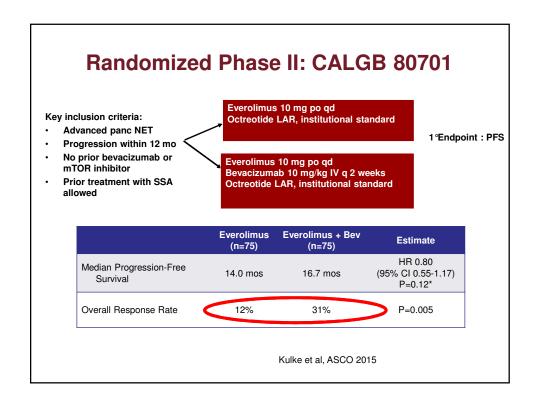


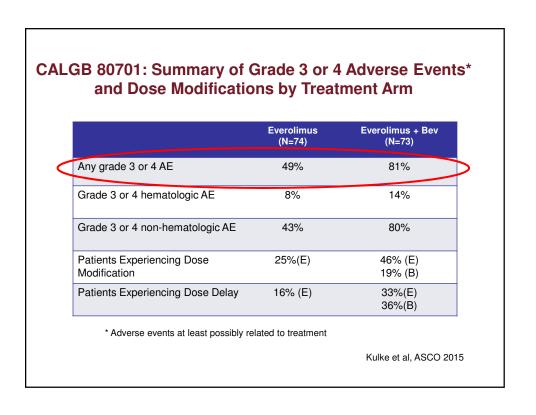

Association of MGMT Status with Response to Temozolomide-Based Therapy

N	MGMT Status	Radiologic Response	PFS (mos)	OS (mos)	Ref.
N=21	MGMT+	0/16 (0%)	9.25	14	Kulke et al, Clin Cancer Res 2009; 15: 338- 45
	MGMT-	4/5 (80%)	19	Not reached	
N=53	MGMT+		7.6	34	Walter et al, BJC 2015; 112: 523-31
	MGMT-		20	105	

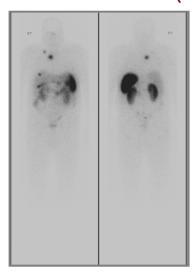





Targeted Therapy for Pancreatic NET


	Sunitinib ¹	Everolimus ²
No. of patients treated	86	207
Median PFS (95% CI) vs. placebo arm	11.4 mo (7.4–19.8) vs. 5.5 mo	11.0 mo (8.4–13.9) vs. 4.6 mo
Median OS	Not reached	Not reached
Objective response rate	9%	5%
Stable disease rate	63%	73%
Specific adverse events	Hypertension (26%) Hand-foot syndrome (23%)	Pneumonitis (17%) Hyperglycemia (13%)

1. Raymond E, et al. N Engl J Med. 2011;364:501-513; 2. Yao JC, et al. N Engl J Med. 2011;364:514-523.



Peptide Receptor Radionuclide Therapy (PRRT)

- Radiolabeled somatostatin analogs
 - Consist of SSTa + chelator + radionuclide
 - 111 In: Auger electrons
 - 90Y: β-radiation
 - $-\ ^{177}Lu\colon\beta$ and $\gamma\text{-radiation}$
- Can deliver tumoricidal doses of radiation to SSTR positive tumors

PRRT for NET

 Table 2. Tumor responses in GEPNET patients treated with different radiolabeled somatostatin analogs

Ligand	Tumor re	esponse		·			
	CR+PR	Patient, n	CR	PR	MR	SD	PD
	%	[ref.]	(%)	(%)	(%)	(%)	(%)
¹¹¹ In-octreotide	0	26 [8]	0	0	2 (8)	15 (58)	9 (35)
¹¹¹ In-octreotide	8	26 [9]	0	2 (8)	NA	21 (81)	3 (12)
90Y-DOTATOC	29	21 [12]	0	6 (29)	NA	11 (52)	4 (19)
⁹⁰ Y-DOTATOC	24	74 [17, 18]	2 (3)	16 (22)	NA	49 (66)	7 (9)
90Y-DOTATOC	9	58 [13] ^a	0	5 (9)	7 (12)	29 (50)	14 (24)
90Y-DOTATOC	4	90 [14] ^b	0	4 (4)	NA	63 (70)	15 (17) ^c
90Y-DOTATOC	23	53 [19]	2 (4)	10 (19)	NA	34 (64)	$7(13)^{d}$
¹⁷⁷ Lu-DOTATATE	29	310 [23]	5 (2)	86 (28)	51 (16)	107 (35)	61 (20)

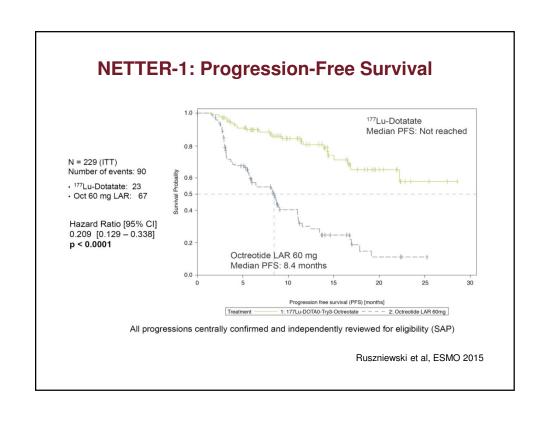
ORR: 0-30%

vanVliet et al, Neuroendocrinology, 2013

PRRT for NET

Table 2. Tumor responses in GEPNET patients treated with different radiolabeled somatostatin analogs

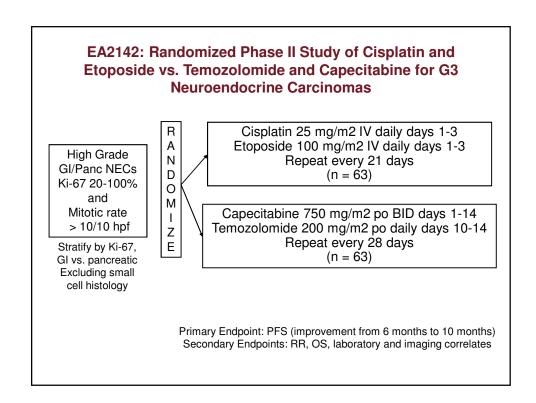
Ligand	Tumor response						
	CR+PR %	Patient, n [ref.]	CR (%)	PR (%)	MR (%)	SD (%)	PD (%)
111In-octreotide	0	26 [8]	0	0	2 (8)	15 (58)	9 (35)
¹¹¹ In-octreotide	8	26 [9]	0	2 (8)	NA	21 (81)	3 (12)
90Y-DOTATOC	29	21 [12]	0	6 (29)	NA	11 (52)	4 (19)
90Y-DOTATOC	24	74 [17, 18]	2(3)	16 (22)	NA	49 (66)	7 (9)
90Y-DOTATOC	9	58 [13] ^a	0	5 (9)	7 (12)	29 (50)	14 (24)
90Y-DOTATOC	4	90 [14] ^b	0	4 (4)	NA	63 (70)	15 (17)°
90Y-DOTATOC	23	53 [19]	2 (4)	10 (19)	NA	34 (64)	7 (13) ^d
¹⁷⁷ Lu-DOTATATE	29	310 [23]	5 (2)	86 (28)	51 (16)	107 (35)	61 (20)

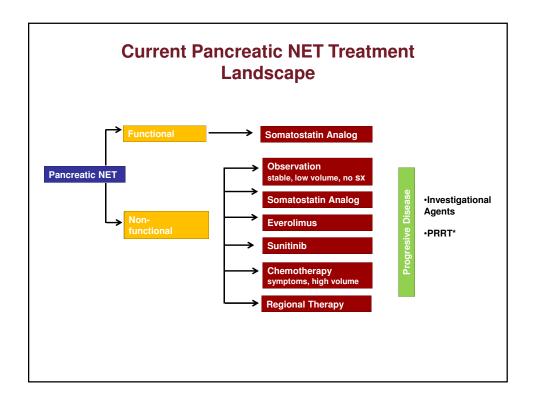

90Y-DOTATOC: More than half who were symptomatic at baseline had durable improvement in symptoms

vanVliet et al, Neuroendocrinology, 2013

PRRT for NET

- Adverse Events
 - GI: nausea, vomiting, diarrhea, abdominal pain
 - Fatigue, anorexia
- · Rare serious adverse events
 - Hematologic toxicity (MDS, AML)
 - Kidney, liver failure


NETTER-1: Phase III Study of 177Lu-Dotatate vs. High Dose Octreotide 177 Lu-Dotatate every 8 weeks x 4 Progressive, advanced SSTR+ midgut + Octreotide LAR 30 mg RANDOMIZE carcinoid tumors n= 115 • Radiographic progression on 20-30 mg octreotide LAR every 3-4 wks within 3 Octreotide LAR 60 mg every 4 weeks n=115 · Low-intermediate grade 1°Endpoint: PFS Ruszniewski et al, ESMO 2015



High Grade Neuroendocrine Carcinoma

- Typically treated with platinum-based chemotherapy
 - Ki-67 proliferation index (>55%) may predict sensitivity to platinum-based chemotherapy
 - Role of targeted agents not well defined
- Temozolomide-based chemotherapy has shown activity as second-line chemotherapy in a retrospective study

Sorbye et al, Ann Oncol, 2013 Welin et al, Cancer, 2011

Unanswered Questions and Future Directions

- · Is there a best first line therapy?
- Is there a best sequence of therapy?
 - SEQTOR: Everolimus followed by STZ/5-FU vs. STZ/5-FU followed by everolimus
- Is there a role for combination therapy?
 - ECOG 2211: Temozolomide +/- capecitabine in pNET
 - CALGB 80701: Everolimus + octreotide +/- bev in pNET

Unanswered Questions and Future Directions

 Can we identify predictors of response to treatment?

DAXX/ATRX, MEN1, mTOR Pathway Genes Altered in pNET

Table 1. Comparison of commonly mutated genes in PanNETs and PDAC based on 68 PanNETs and 114 PDACs.

Genes*	PanNET	PDAC†
MEN1	44%	0%
DAXX, ATRX	43%	0%
Genes in mTOR pathway	15%	0.80%
TP53	3%	85%
KRAS	0%	100%
CDKN2A	0%	25%
TGFBR1, SMAD3, SMAD4	0%	38%

Jiao et al, Science 2011; 331: 1199-203

Treatment Options for NET

- · Control of hormone hypersecretion
 - Somatostatin analogs
 - Everolimus for insulinoma
 - PPI for gastrinoma
- · Control of tumor growth
 - sst analogs, everolimus, sunitinib, alkylating agents (temozolomide, streptozocin)
 - Regional therapy
 - ? PRRT
- Ongoing studies: combination therapy, novel agents

Selected clinical trials for panc NET

Study Regimen	
Temozolomide with or without capecitabine (ECOG)	NCT01824875
Capecitabine + temozolomide + bevacizumab	NCT01525082
Temozolomide + pazopanib	NCT01465659
Cabozantinib	NCT01466036
X-82 (VEGFR/PDGFR inhinitor) + everolimus	NCT01784861
Ziv-aflibercept	NCT02101918
Ibrutinib for advanced carcinoid and pNET	NCT0257530
Carfilzomib for NET [proteosome inhibitor]	NCT02318784
LEE011 for advanced foregut NET [CDK4/6 inhibitor]	NCT02420691
¹⁷⁷ Lu-Octreotate vs. Sunitinib (Europe)	NCT02230176
Cisplatin and Etoposide vs.Temozolomide and Capecitabine for G3 Gl/panc NEC (ECOG)	NCT02595424

Thank you for your participation.

If you have questions, please contact Patient Central at (877) 272-6226 or e-mail patientcentral@pancan.org.

www.pancan.org

