Definitions

- **Cancer**: A malignant tumor characterized by potentially unlimited growth with local expansion by invasion and systemic expansion by metastasis.
- **Tumor**: An abnormal mass, a growth
 - **Benign**: “of a gentle disposition”, not life-threatening
 - **Malignant**: “malevolent or malicious”; capable of invading and metastasizing
- **Metastatic**: Transfer to another part of the body

(Webster’s)
There are more than 200 different kinds of cancer

Classified anatomically

<table>
<thead>
<tr>
<th></th>
<th>Men</th>
<th>Women</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prostate</td>
<td>21%</td>
<td></td>
</tr>
<tr>
<td>Lung & bronchus</td>
<td>14%</td>
<td>13%</td>
</tr>
<tr>
<td>Colon & rectum</td>
<td>8%</td>
<td>8%</td>
</tr>
<tr>
<td>Urinary bladder</td>
<td>7%</td>
<td>7%</td>
</tr>
<tr>
<td>Melanoma of skin</td>
<td>6%</td>
<td>6%</td>
</tr>
<tr>
<td>N-H lymphoma</td>
<td>5%</td>
<td>4%</td>
</tr>
<tr>
<td>Kidney</td>
<td>5%</td>
<td>3%</td>
</tr>
<tr>
<td>Oral cavity</td>
<td>4%</td>
<td>3%</td>
</tr>
<tr>
<td>Leukemia</td>
<td>4%</td>
<td>3%</td>
</tr>
<tr>
<td>Liver</td>
<td>3%</td>
<td>3%</td>
</tr>
<tr>
<td>Pancreas</td>
<td>3%</td>
<td></td>
</tr>
</tbody>
</table>

2016 Estimated US new Cancer Cases, ACS

Cancer commonly occurs in epithelial cells

Lung and skin: cells in contact with air

Colon and bladder: cells in contact with food and its breakdown products

Breast, prostate, & pancreatic: cells that line the ducts that lead to the outside of the body
Normal vs cancer: cellular evolution

Exposure to carcinogens (cancer-causing agents) can initiate tumor evolution

Skin: UV irradiation from the sun
Lung: Cigarette smoke
Colon: Meat cooked at high temperatures
Prostate, breast & pancreatic: ?
Sometimes mistakes just happen! 10^{-6}/gene/cell div
DNA Mutations

Cell nucleus

Chromosomes

Genes

DNA

Nucleotides

AGCGTTCGATGACC

AGCGTCCGATGACC

DNA Mutation

AGCGTCCGATGACC

RNA

Protein

Cell behaves different!
How cancer cells behave differently: the Hallmarks of Cancer

- No longer needs to be told to grow
- Ignores signals to die
- Feeds itself: Calls in new blood vessels
- Invades and metastasizes
- Never grows old

Hanahan and Weinberg, Cell, 2000

The evolution of cancer cells

- No longer needs to be told to grow
- Ignores signals to stop growing
- Invades and metastasizes
- DNA mutations

Hanahan and Weinberg, Cell, 2000
Cancer goes from local, to regional, to systemic – it evolves

Main reason why curing cancer has been tricky!

Evolutionary parallels

All are designed to eliminate growing cells
Many toxicities and side-effects
Can’t we apply our molecular knowledge and evolve further?

Design a drug that addresses the root of the problem and minimizes side-effects:
Attack the mutation and its associated behavioral change

From research to clinical practice

BASIC
- Laboratory-based
- Lots of small grants in academic labs

TRANSLATIONAL
- Links lab and clinic
- In academia or industry
- Very hard to find funding

CLINICAL
- Clinical trials
- Led by academics
- Supported by industry
- Phase I
- Phase II
- Phase III
Targeted cancer therapy

- Her2/neu → Herceptin
- EGF Receptor → Iressa & Tarceva
- Abl → Gleevec

Personalized Cancer Therapy

Test for specific mutation → Targeted therapies
One size doesn’t fit all: personalized medicine

Successes in changing the standard of care

• **Chronic Myelogenous Leukemia**
 Patients with the Philadelphia chromosome (99%) treated with imatinib increased 5-year survival from 30% to 89%

• **Breast**
 Patients with overexpressed HER-2 (20%) have a 37% improvement in overall survival if treated with trastuzumab

• **Lung**
 Patients with an EML4-ALK fusion (5%) treated with crizotinib have improved survival from 8 to 20 months

• **Melanoma**
 Patients with a V600E BRAF mutation (40%) have a 48% response rate to venurafenib or dabrafenib/trametinib

• **Lung**
 Patients with EGFR mutations (8 to 30%) have improved progression free survival from 4.6 to 13 months when treated with erlotinib

There have been minimal attempts at personalized medicine in pancreatic cancer

• There are no clinically meaningful targeted treatments for pancreatic cancer

• 5 – 15% of current pancreatic cancer clinical trials are using a personalized medicine approach
Know Your Tumor™
As of November 1, 2016

>900 patients enrolled
>400 reports completed
91% successful biopsies
35% from community physicians
41 states
Know Your Tumor results Oct 2016

NGS

Highly actionable 27%
Not actionable 51%
Modifies Options (in pathway, WNT, MEK, MET, etc)

Highly Actionable
- BRCA1/2
- PALB2
- ATM
- CHEK1/2
- FANCA/C
- STK11
- AKT1/2/3
- TSC12
- CDK4/6
- FGFR1/4
- ERBB2
- RET
- NTRK1/3
- TOP2A
- BRAF
- ALK
- ROS1

PARP inhibitor
mTOR/AKT inhibitor
CDK inhibitor
FGFR inhibitor
HER2 inhibitor
TRK inhibitor
Anthracycline
BRAF inhibitor
ALK inhibitor
ROS inhibitor

Pishvaian et al, manuscript in preparation

Action: 61 patients initiated treatment with report-based therapy

Clinical Trial (N=15)
- IMTX/Vaccine
- Ruxolitinib
- PARP
- Other

Off Label (N=11)
- PARP
- Trastuzumab
- Ceritinib
- Sunitinib
- Everolimus
- Crizotinib
- Immunotherapy

FDA approved (N=36)
- Standard of care CHX
- Erlotinib

Pishvaian et al, manuscript in preparation
Clinical Trials

Increase clinical trial enrollment rate

Promote running “smart” clinical trials

PRECISION PROMISE

Revolutionizing treatment for every pancreatic cancer patient.
Precision Promise Clinical Trial Consortium

Initial Precision Promise trial

Master Protocol
- Initial biopsy, at progression
- DNA panel, WGS/WES
- RNA seq
- IHC: HA, IO

Stromal disruption
- HA Hi to PEGPH20, 4 mos
- With platinum OR Gem/Abx
- Determine persistence

DNA Damage Repair
- Platinum 4 mos
- PARPi if platinum responsive
- PARPi if BrCa mutant
- Determine biomarkers of response

Immuno-oncology
- Gem/Abx backbone
- FAKi or CCR2i plus anti PD-1
- Determine response & biomarkers
- CD40 agonist 2 mos in some
- Biomarker hypothesis

Supportive Care
- Standardize throughout sites
- Learn and modify

COMING: Spring 2017

Initial 3 Sub-studies
Benefits of Precision Promise

Precision Medicine is an opportunity to dramatically improve outcomes for pancreatic cancer patients

For the patients in the trial

- Biomarker-driven
- Rapidly move through options
- Best practice supportive care

For future patients

- Learn which biomarkers predict response
- Signal seeking: guide subsequent trials
- Refine supportive care

Our goal

Double SURVIVAL by 2020