Hereditary Aspects of Pancreatic Cancer

Genetic Risk Assessment and Counseling for Familial Pancreatic Cancer

Amie Blanco, MS, CGC
Gordon and Betty Moore Endowed Counselor of Hereditary GI Cancer Prevention
UCSF Cancer Genetics and Prevention Program

February 3, 2016
Cancer Genetics & Prevention Program

Pancreatic Cancer Seminar
San Francisco, CA

Risk Factors For Pancreatic Cancer

- Smoking
- Age
- Race
- Gender
- Obesity
- Diabetes
- Chronic Pancreatitis
- Family History
Family History

- 5-10% of patients with pancreatic cancer will have a family member with the disease.

- Patients with pancreatic cancer are 1.9-13 times more likely to have a family history of pancreas cancer.

- Pancreatic Cancer Cohort Consortium (PanScan) 2010:
 - Risk to 1st degree relatives is 1.76 times higher

What Percentage of Cancer is Thought to be Hereditary?

- 60-85% Sporadic
- 10-30% combination
- 5-10% hereditary
“Sporadic” Pancreatic Cancer:

MI Smoker
d.71

77

75

54

50

Pancreas Cancer

“Familial” Pancreatic Cancer:

MI Smoker
d.71
d.85

77

75

54

50

Pancreas Cancer
"Hereditary" Pancreatic Cancer:

When to Suspect a Hereditary Cancer Syndrome

- Cancer in two or more close relatives (on the same side of the family).
- Early age at diagnosis.
- Multiple primary tumors.
- Bilateral or multiple rare tumors.
- Constellation of cancers consistent with known cancer syndrome (e.g., breast and ovary).
- Lack of other known risk factors.
- Multiple generations affected (vertical transmission).
Autosomal Dominant Inheritance

Father with mutation on one chromosome

Each child has a 50% chance of inheriting an autosomal dominant disorder

Family History

- Current age or age at death
- Age at diagnosis of cancer
- Type and location of primary cancer(s), stage, laterality, treatment
- Second cancer: metastasis or new primary
- Environmental exposures
- Ethnicity/Race
- Other risk factors/significant health conditions
Guidelines for Considering Genetic Testing

- Patient has a reasonable likelihood of carrying an altered cancer susceptibility gene.
- Genetic test result can be adequately interpreted.
- Results will impact medical management or aid in the diagnosis of a hereditary cancer syndrome.

Genetic Testing: Technical Considerations

- It is a blood test.
 - DNA from peripheral WBCs is analyzed.
- Next generation sequencing panels allow analysis of numerous genes with a single test, at one low price.
 - Sensitivity for each gene tested is >99%.
Interpreting Test Results

1. Positive for a deleterious mutation

2. No mutation detected
 - Mutation previously identified in the family
 - True negative
 - No known mutation in the family
 - Inconclusive

3. Uncertain clinical significance
 - Approximately 10% of all genetic tests

Inconclusive Negative Results

- Does not rule out genetic predisposition
 - Cancer in family could be caused by mutation(s) not detected by current tests
 - Cancer in family could be caused by another gene that was not tested
 - Tested person could have sporadic cancer. Another affected family member may need to be tested
Benefits of Genetic Testing

- Identifies high-risk individuals
- Identifies non-carriers in families with a known mutation (i.e. general population risk)
- Allows early detection and prevention strategies
- May relieve anxiety (positive or negative)

Risks and Limitations of Genetic Testing

- Does not detect all mutations
- Uncertain test results
- Continued risk of sporadic cancer
- Efficacy of interventions sometimes unproven
- Psychosocial issues
Psychosocial and Ethical Issues in Cancer Predisposition Testing

- Anxiety/fear
- Guilt
- Self-esteem
- Depression
- Stigmatization
- Grief and/or loss
- Family dynamics
- Right to know/right not to know
- Sharing of information
- Coercion
- Privacy
- Reproductive decisions
- Testing of minors

Genetic Testing: Cost and Insurance Coverage

- The cost of genetic testing has decreased dramatically over the past few years due to the development of massively parallel sequencing (next generation sequencing panels). Self-pay price ranges from $300-500 depending on lab.
- The vast majority of insurers cover at least some portion of genetic testing.
- Medicare will cover genetic testing if strict guidelines are met. Medicaid coverage varies.
- Most laboratories offer pre-verification services before committing to the cost of genetic testing.
Genetic Testing: Discrimination and the Law

- Genetic discrimination:
 - Social or economic based on one’s inherited predisposition to disease.
 - Increased cost or denied access to insurance.
 - Loss of employment, education or other opportunities.
 - Fact vs. Fiction?

Protections: State and Federal
- GINA
 - Went into effect May of 2009
 - Health insurance and employment protections.
 - Currently does not cover members of active military.

Genetic Predisposition to Pancreatic Cancer

- High Penetrance Genes
 - Known hereditary cancer predisposition syndromes
 - Hereditary pancreatitis
 - Familial pancreatic cancer (FPC)

- Low Penetrance Susceptibility Variants
 - Ex: ABO blood group
 - Limited knowledge

- Gene-gene interactions and gene-environment interactions
 - Poorly understood
Known Hereditary Cancer Predisposition Syndromes

- **Peutz-Jeghers Syndrome (PJS)**
 - STK11 gene
- **Multiple Endocrine Neoplasia type I**
 - Neuroendocrine PC
 - MEN1 gene
- **Familial Adenomatous Polyposis**
 - APC and MYH genes
- **Familial Melanoma (FM)**
 - CDKN2A/p16
- **Li-Fraumeni Syndrome**
 - TP53 gene
- **Lynch Syndrome (HNPCC)**
 - MLH1, MSH2, MSH6, PMS2, EPCAM
- **Hereditary Breast and Ovarian Cancer (HBOC)**
 - BRCA1 and BRCA2
- **Familial Breast Cancer**
 - ATM, PALB2

Peutz-Jeghers Syndrome

- Often presents as small bowel intussusception
- Melanin pigmentation
- Lifetime risk of *any* cancer is 93%
 - Colon, stomach, small bowel, pancreas, breast, cervix, lung, testicle, ovary.
- Autosomal Dominant (STK-11)
Multiple Endocrine Neoplasia Type 1 (MEN1)

- Includes varying combinations of more than 20 endocrine and non-endocrine tumors.
 - Parathyroid
 - Pituitary
 - Pancreatic Islet Cell
 - Gastrinoma
 - Insulinoma
 - Glucagonoma
- MEN1 (menin) gene
- Autosomal dominant

Familial Adenomatous Polyposis (FAP)

- 100’s to 1000’s colonic adenomas
- Average age of polyp onset is 15 years
- Cancer risk approaches 100%
- Average age of cancer diagnosis is 39 years
- APC gene
 - Autosomal dominant
- MYH gene
 - Autosomal recessive
Familial Melanoma (FM) Syndrome

- Characterized by a dominant pattern of melanoma and dysplastic nevi
- Risk for pancreas cancer is increased (22-fold)
- P16 gene (CDKN2A)
- Genetic testing is controversial

![Image of asymmetry, border irregularity, color, and diameter of melanoma with ¼ inch or 6mm]

Family 1

Family tree showing members with various diagnoses including leukemia, breast, colon, lung, pancreas, and diabetes.
Li-Fraumeni Syndrome

- **TP53 gene**
 - Autosomal dominant
- **90% lifetime risk for cancer.**
 - Childhood: leukemia, sarcoma, adrenocortical carcinoma, brain tumors.
 - Adulthood: leukemia, sarcoma, brain tumors, breast cancer, pancreatic cancer, colon cancer, melanoma, lung cancer, and others.
Lynch Syndrome

- Early but variable age at colorectal and endometrial cancer diagnosis (40-45 years)
- Tumor site in proximal colon predominates (50-70%)
- Other cancers: urinary tract, ovary, stomach, small bowel, pancreas, brain tumors, and sebaceous skin tumors
- DNA mismatch repair genes: MLH1, MSH2, MSH6, PMS2, EPCAM
- Autosomal dominant
Hereditary Breast and Ovarian Cancer Syndrome

- Breast cancer (50-85%)
- Second primary (40-60%)
- Male breast cancer (5-10%)
- Ovarian and fallopian tube cancer (BRCA1 up to 50%)
 (BRCA2 up to 25%)
- Prostate cancer (16-22%)

- Autosomal Dominant Transmission
- Small increase in risk of other cancers (e.g. pancreas, melanoma)

Prevalence of BRCA2 in PC

- 7% of apparently sporadic pancreas cancer (Goggins et al. 1996)
- 10% of Ashkenazi Jewish patients with pancreas cancer (Ozcelik et al. 1997)
- 17% of kindreds with three or more relatives affected with pancreas cancer (Murphy et al. 2002)
BRCA1 and BRCA2 Mutations in the Ashkenazi Jewish Population

1 in 40 Individuals of Ashkenazi Jewish descent has a BRCA1 or BRCA2 Mutation

- **185delAG**
 - Prevalence = ~1%

- **5382insC**
 - Prevalence = ~0.15%

- **6174delT**
 - Prevalence = ~1.5%

PALB2

- Official name “partner and localizer of BRCA2”
- Genome maintenance gene
- PALB2 binds to BRCA2 stabilizing it and anchoring it to structures in the nucleus allowing BRCA2 to repair DNA
PALB2

- Sequence Analysis of 20,661 genes: *PALB2* mutated in one proband
- 3 of 96 additional FPC patients sequenced also had truncating *PALB2* mutations
- Co-segregation was observed
 - Two brothers with pancreatic cancer both had same PALB2 stop mutations
- 3 of 4 families also had history of breast cancer
- The cumulative breast cancer risk is now known to be between 40-60%.
- Risk of pancreatic cancer is still uncertain

Family 3
ATM

- Well known gene. Causes ataxia telangectasia when recessively inherited.
 - Childhood onset ataxia: unsteady gait, lack of coordinated muscle movements.
 - Telangectasias: tiny red spider veins (dilated blood vessels) of the eyes, ears, cheeks and other sun exposed areas.
 - Increased risk of cancers, primarily leukemia and lymphoma. Individuals with A-T are also sensitive to ionizing radiation

ATM

- Mothers of children with AT appeared to have a higher prevalence of breast cancer than women in the general population.
- ATM also participates in the BRCA1/2 pathway, and is therefore essential to BRCA1/2 mediated DNA repair.
- The cumulative breast cancer risk is now known to be 30%.
- May also increase the risk of other cancers: pancreatic, ovarian, and colon. Risks are still uncertain.
Hereditary Pancreatitis

- **Autosomal dominant disease with 80% penetrance and 40% lifetime risk for PC.**
 - PRSS1 mutations found in ~70% of families.
 - Other genes include SPINK1, CFTR, and CTRC.
 - Risk is often determined by a combination of all of the above genes (multi-genic).
- **Risk is further increased in cases with cigarette smoking.**
Most patients with a strong family history of pancreatic cancer do not fit into one of these recognized syndromes!

Familial Pancreatic Cancer

- Absence of known hereditary cancer predisposition syndrome.
- Autosomal dominant with variable penetrance.
- No consistent definition: at least two 1st degree relatives with PC or three or more relatives of any degree, especially if one is young onset.
Empiric risks of pancreatic cancer

• Based on the number of affected first degree relatives (FDR):
 – One FDR = 4.5-fold
 – Two FDRs = 6.4-fold
 – Three FDRs = 32-fold

Ongoing Gene Discovery Studies

• PacGene
 – Multi-center linkage consortium: Johns Hopkins, Mayo Clinic, Karmanos Cancer Institute, M.D. Anderson Cancer Center, University of Toronto, Dana-Farber Cancer Institute

• PANSCAN
 – Genome Wide Association Studies: The Pancreatic Cancer Cohort Consortium; JHU, MD Anderson, Mayo, Mount Sinai, MSKCC, USCF, Group Health (Seattle WA)
Resources

• National Society of Genetic Counselors
 – http://www.nsgc.org

• National Cancer Institute
 – [Cancer Genetics Services Directory](http://www.cancer.gov/cancertopics/genetics/directory)